Library-Api Flask Patterns and Best Practices Guide
Table of Contents
- Application Factory Pattern
- Blueprint Architecture
- Rate Limiting with Flask-Limiter
- Caching with Flask-Caching
- Pagination Implementation
- Marshmallow Schema Validation
- JWT Authentication Flow
- SQLAlchemy Model Patterns
- Configuration Management
- Advanced Route Patterns
1. Application Factory Pattern
Overview
The application factory pattern creates Flask applications dynamically, allowing for better testing, multiple instances, and environment-specific configurations.
Implementation
File: app/__init__.py
from flask import Flask
from .models import db
from .extensions import ma, limiter, cache
from .blueprints.user import users_bp
from .blueprints.books import books_bp
from .blueprints.loans import loans_bp
def create_app(config_name):
app = Flask(__name__)
app.config.from_object(f'config.{config_name}')
# Initialize my extension onto my Flask app
db.init_app(app)
ma.init_app(app)
limiter.init_app(app)
cache.init_app(app)
# Register blueprints
app.register_blueprint(users_bp, url_prefix='/users')
app.register_blueprint(books_bp, url_prefix='/books')
app.register_blueprint(loans_bp, url_prefix='/loans')
return app
File: app.py (Entry Point)
from app.models import db
from app import create_app
app = create_app('DevelopmentConfig')
with app.app_context():
db.create_all() # Creating our database tables
app.run()
Key Benefits
- Environment-specific configuration (Development, Testing, Production)
- Easy testing with multiple app instances
- Clean separation of concerns
- Delayed extension initialization
Best Practices
- Initialize extensions outside of the factory function
- Use
init_app()pattern for all Flask extensions - Register blueprints with URL prefixes for API versioning
- Use
app.app_context()for database operations outside request context
2. Blueprint Architecture
Overview
Blueprints organize Flask applications into modular components, each handling specific functionality.
Structure
app/
├── blueprints/
│ ├── books/
│ │ ├── __init__.py
│ │ ├── routes.py
│ │ └── schemas.py
│ ├── loans/
│ │ ├── __init__.py
│ │ ├── routes.py
│ │ └── schemas.py
│ └── user/
│ ├── __init__.py
│ ├── routes.py
│ └── schemas.py
Implementation
File: app/blueprints/books/__init__.py
from flask import Blueprint
books_bp = Blueprint('books_bp', __name__)
from . import routes
File: app/blueprints/books/routes.py
from . import books_bp
from .schemas import book_schema, books_schema
from flask import request, jsonify
from marshmallow import ValidationError
from app.models import Books, db
from app.extensions import limiter, cache
from sqlalchemy import select
@books_bp.route('', methods=['POST'])
def create_book():
try:
data = book_schema.load(request.json)
except ValidationError as e:
return jsonify(e.messages), 400
new_book = Books(**data)
db.session.add(new_book)
db.session.commit()
return book_schema.jsonify(new_book), 201
Registration Pattern
# In create_app()
app.register_blueprint(users_bp, url_prefix='/users')
app.register_blueprint(books_bp, url_prefix='/books')
app.register_blueprint(loans_bp, url_prefix='/loans')
Best Practices
- One blueprint per resource/domain
- Keep routes, schemas, and business logic together
- Use URL prefixes for API organization
- Import routes at the end of
__init__.pyto avoid circular imports - Name blueprints descriptively with
_bpsuffix
3. Rate Limiting with Flask-Limiter
Overview
Flask-Limiter provides rate limiting functionality to protect API endpoints from abuse.
Configuration
File: app/extensions.py
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
limiter = Limiter(
get_remote_address,
default_limits=["200 per day", "50 per hour"]
)
Usage Patterns
1. Route-Level Rate Limiting
@books_bp.route('/<int:book_id>', methods=['PUT'])
@limiter.limit("30 per hour")
def update_book(book_id):
# Update logic
pass
@books_bp.route('/<int:book_id>', methods=['DELETE'])
@limiter.limit("8 per day")
def delete_book(book_id):
# Delete logic
pass
2. Override Default Limits
@loans_bp.route('/<int:loan_id>/add-book/<int:book_id>', methods=['PUT'])
@limiter.limit("600 per day", override_defaults=True)
def add_book(loan_id, book_id):
# Logic
pass
3. Login Protection
@users_bp.route('/login', methods=['POST'])
@limiter.limit("5 per 10 minute")
def login():
# Login logic
pass
4. Profile Access Rate Limiting
@users_bp.route('/profile', methods=['GET'])
@limiter.limit("15 per hour")
@token_required
def read_user():
# Profile retrieval logic
pass
Rate Limit Formats
"5 per minute""10 per hour""100 per day""5 per 10 minute"(custom window)
Best Practices
- Set global default limits to protect all endpoints
- Use stricter limits for sensitive operations (login, delete)
- Use more relaxed limits for read operations
- Override defaults when specific endpoints need different limits
- Use
get_remote_addressfor identifying clients by IP - Consider authenticated user tracking for more granular control
4. Caching with Flask-Caching
Overview
Flask-Caching improves API performance by caching expensive operations and database queries.
Configuration
File: app/extensions.py
from flask_caching import Cache
cache = Cache()
File: config.py
class DevelopmentConfig:
CACHE_TYPE = "SimpleCache"
CACHE_DEFAULT_TIMEOUT = 300 # 5 minutes
Usage Patterns
1. Route Caching
@books_bp.route('/popularity', methods=['GET'])
@cache.cached(timeout=90)
def get_popular_books():
books = db.session.query(Books).all()
books.sort(key=lambda book: len(book.loans), reverse=True)
# Return popular books
return jsonify(output), 200
2. Important Note on Pagination
@books_bp.route('', methods=['GET'])
# @cache.cached(timeout=90) # If you cache paginated routes it will cache a single page
def get_books():
# Pagination logic
pass
Cache Types
SimpleCache: In-memory cache (development)RedisCache: Redis-based cache (production)FileSystemCache: File-based cacheMemcachedCache: Memcached-based cache
Best Practices
- Don’t cache paginated endpoints (caches only one page)
- Use shorter timeouts for frequently updated data
- Cache expensive computations (aggregations, complex queries)
- Use Redis or Memcached in production
- Implement cache invalidation for data updates
- Monitor cache hit rates
5. Pagination Implementation
Overview
Pagination limits the amount of data returned per request, improving performance and user experience.
Implementation
@books_bp.route('', methods=['GET'])
def get_books():
try:
page = int(request.args.get('page'))
per_page = int(request.args.get('per_page'))
query = select(Books)
books = db.paginate(query, page=page, per_page=per_page)
return books_schema.jsonify(books), 200
except:
books = db.session.query(Books).all()
return books_schema.jsonify(books), 200
Usage
GET /books?page=1&per_page=10
GET /books?page=2&per_page=20
Key Components
- Query Parameters:
pageandper_page - SQLAlchemy Select: Using
select()for modern query building - db.paginate(): Built-in Flask-SQLAlchemy pagination
- Fallback: Returns all items if pagination params missing
Pagination Response Structure
# db.paginate() returns object with:
# - items: list of records
# - page: current page number
# - per_page: items per page
# - total: total number of items
# - pages: total number of pages
# - has_next: boolean
# - has_prev: boolean
Best Practices
- Always validate pagination parameters
- Set reasonable defaults (e.g., per_page=20)
- Set maximum limits (e.g., max per_page=100)
- Include pagination metadata in responses
- Use cursor-based pagination for large datasets
- Don’t cache paginated endpoints
6. Marshmallow Schema Validation
Overview
Marshmallow provides object serialization/deserialization and validation for Flask applications.
Extension Setup
File: app/extensions.py
from flask_marshmallow import Marshmallow
ma = Marshmallow()
Schema Patterns
1. Basic SQLAlchemy Auto Schema
from app.extensions import ma
from app.models import Books
class BookSchema(ma.SQLAlchemyAutoSchema):
class Meta:
model = Books
book_schema = BookSchema()
books_schema = BookSchema(many=True)
2. Schema with Exclusions
from app.extensions import ma
from app.models import Users
class UserSchema(ma.SQLAlchemyAutoSchema):
class Meta:
model = Users
user_schema = UserSchema()
users_schema = UserSchema(many=True)
login_schema = UserSchema(exclude=['first_name', 'last_name', 'role'])
Usage Patterns
1. Request Validation (Deserialization)
@books_bp.route('', methods=['POST'])
def create_book():
try:
# Validates data and translates JSON to Python dictionary
data = book_schema.load(request.json)
except ValidationError as e:
return jsonify(e.messages), 400
new_book = Books(**data)
db.session.add(new_book)
db.session.commit()
return book_schema.jsonify(new_book), 201
2. Response Serialization (Full Response)
@users_bp.route("", methods=["GET"])
def read_users():
users = db.session.query(Users).all()
return users_schema.jsonify(users), 200
3. Partial Serialization (dump)
@loans_bp.route('/<int:loan_id>/add-book/<int:book_id>', methods=['PUT'])
def add_book(loan_id, book_id):
loan = db.session.get(Loans, loan_id)
book = db.session.get(Books, book_id)
loan.books.append(book)
db.session.commit()
return jsonify({
'message': f'successfully add {book.title} to loan',
'loan': loan_schema.dump(loan), # Use dump for partial responses
'books': books_schema.dump(loan.books)
}), 200
Serialization Methods
schema.load(): JSON → Python (deserialization + validation)schema.dump(): Python → Dict (serialization)schema.jsonify(): Python → JSON Response (serialization + jsonify)
Best Practices
- Use
SQLAlchemyAutoSchemato auto-generate from models - Create separate schemas for different use cases (e.g., login_schema)
- Use
excludeoronlyfor field control - Always handle
ValidationErrorexceptions - Use
many=Truefor collections - Use
.load()for incoming data (with validation) - Use
.dump()for partial serialization in complex responses - Use
.jsonify()for simple endpoint responses
7. JWT Authentication Flow
Overview
JWT (JSON Web Tokens) provide stateless authentication for API endpoints.
Configuration
File: app/util/auth.py
from datetime import datetime, timedelta, timezone
from jose import jwt
import jose
from functools import wraps
from flask import request, jsonify
SECRET_KEY = 'super secret secrets'
Token Generation
def encode_token(user_id, role="user"):
payload = {
'exp': datetime.now(timezone.utc) + timedelta(days=0, hours=1),
'iat': datetime.now(timezone.utc),
'sub': str(user_id), # IMPORTANT: Convert user ID to string
'role': role
}
token = jwt.encode(payload, SECRET_KEY, algorithm='HS256')
return token
Token Validation Decorator
def token_required(f):
@wraps(f)
def decoration(*args, **kwargs):
token = None
if 'Authorization' in request.headers:
# Extract token from "Bearer <token>"
token = request.headers['Authorization'].split()[1]
if not token:
return jsonify({"error": "token missing from authorization headers"}), 401
try:
data = jwt.decode(token, SECRET_KEY, algorithms=['HS256'])
request.logged_in_user_id = data['sub']
except jose.exceptions.ExpiredSignatureError:
return jsonify({'message': 'token is expired'}), 403
except jose.exceptions.JWTError:
return jsonify({'message': 'invalid token'}), 401
return f(*args, **kwargs)
return decoration
Login Flow
@users_bp.route('/login', methods=['POST'])
@limiter.limit("5 per 10 minute")
def login():
try:
data = login_schema.load(request.json)
except ValidationError as e:
return jsonify(e.messages), 400
user = db.session.query(Users).where(Users.email==data['email']).first()
if user and check_password_hash(user.password, data['password']):
token = encode_token(user.id, role=user.role)
return jsonify({
"message": f"Welcome {user.first_name}",
"token": token,
}), 200
Protected Route Example
@users_bp.route('/profile', methods=['GET'])
@limiter.limit("15 per hour")
@token_required
def read_user():
user_id = request.logged_in_user_id
user = db.session.get(Users, user_id)
return user_schema.jsonify(user), 200
@users_bp.route("", methods=["DELETE"])
@token_required
def delete_user():
token_id = request.logged_in_user_id
user = db.session.get(Users, token_id)
db.session.delete(user)
db.session.commit()
return jsonify({"message": f"Successfully deleted user {token_id}"}), 200
Password Hashing
from werkzeug.security import generate_password_hash, check_password_hash
# During registration
data["password"] = generate_password_hash(data["password"])
# During login
if user and check_password_hash(user.password, data['password']):
# Login success
pass
JWT Payload Structure
{
"exp": 1763518014, // Expiration timestamp
"iat": 1763514414, // Issued at timestamp
"sub": "1", // Subject (user ID as string)
"role": "Admin" // Custom claim (user role)
}
Authorization Header Format
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3NjM1MTgwMTQsImlhdCI6MTc2MzUxNDQxNCwic3ViIjoiMSIsInJvbGUiOiJBZG1pbiJ9.2gEKkaU_LEQAxEPbj5734khp4k6jKMgJQsayui70iPw
Best Practices
- Use strong, random SECRET_KEY (store in environment variables)
- Set reasonable token expiration times (1-24 hours)
- Always convert user_id to string in payload
- Store user_id in request object for easy access
- Combine rate limiting with authentication
- Use HTTPS in production to protect tokens
- Implement token refresh mechanism for long sessions
- Hash passwords with werkzeug.security
- Handle all JWT exceptions properly
- Don’t store sensitive data in JWT payload
8. SQLAlchemy Model Patterns
Overview
Modern SQLAlchemy 2.0+ patterns using Mapped types and declarative base.
Base Configuration
File: app/models.py
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship
from sqlalchemy import String, Date, Column, ForeignKey, Table
from datetime import date, datetime, timedelta
class Base(DeclarativeBase):
pass
db = SQLAlchemy(model_class=Base)
Model Patterns
1. Many-to-Many Association Table
loan_books = Table(
'loan_books',
Base.metadata,
Column('loan_id', ForeignKey('loans.id')),
Column('book_id', ForeignKey('books.id'))
)
2. User Model with Relationships
class Users(Base):
__tablename__ = 'users'
id: Mapped[int] = mapped_column(primary_key=True)
first_name: Mapped[str] = mapped_column(String(250), nullable=False)
last_name: Mapped[str] = mapped_column(String(250), nullable=False)
email: Mapped[str] = mapped_column(String(350), nullable=False, unique=True)
password: Mapped[str] = mapped_column(String(150), nullable=False)
DOB: Mapped[date] = mapped_column(Date, nullable=True)
address: Mapped[str] = mapped_column(String(500), nullable=True)
role: Mapped[str] = mapped_column(String(30), nullable=False)
loans: Mapped[list['Loans']] = relationship('Loans', back_populates='user')
3. Loans Model with Foreign Keys
class Loans(Base):
__tablename__ = 'loans'
id: Mapped[int] = mapped_column(primary_key=True)
user_id: Mapped[int] = mapped_column(ForeignKey('users.id'), nullable=False)
loan_date: Mapped[date] = mapped_column(Date, default=datetime.now())
deadline: Mapped[date] = mapped_column(Date, default=datetime.now() + timedelta(days=14))
return_date: Mapped[date] = mapped_column(Date, nullable=True)
user: Mapped['Users'] = relationship('Users', back_populates='loans')
books: Mapped[list['Books']] = relationship("Books", secondary=loan_books, back_populates='loans')
4. Books Model with Secondary Relationship
class Books(Base):
__tablename__ = 'books'
id: Mapped[int] = mapped_column(primary_key=True)
title: Mapped[str] = mapped_column(String(120), unique=True, nullable=False)
genre: Mapped[str] = mapped_column(String(360), nullable=False)
age_category: Mapped[str] = mapped_column(String(120), nullable=False)
publish_date: Mapped[date] = mapped_column(Date, nullable=False)
author: Mapped[str] = mapped_column(String(500), nullable=False)
loans: Mapped[list['Loans']] = relationship("Loans", secondary=loan_books, back_populates='books')
Database Operations
1. Create
new_book = Books(**data)
db.session.add(new_book)
db.session.commit()
2. Read (Query All)
books = db.session.query(Books).all()
3. Read (Query by ID)
book = db.session.get(Books, book_id)
4. Read (Query with Filter)
user = db.session.query(Users).where(Users.email==data['email']).first()
5. Update
book = db.session.get(Books, book_id)
for key, value in data.items():
setattr(book, key, value)
db.session.commit()
6. Delete
book = db.session.get(Books, book_id)
db.session.delete(book)
db.session.commit()
7. Many-to-Many Operations
# Add relationship
loan.books.append(book)
db.session.commit()
# Remove relationship
loan.books.remove(book)
db.session.commit()
# Check relationship
if book in loan.books:
# Book is in loan
pass
Best Practices
- Use
Mapped[]type hints for type safety - Use
mapped_column()instead ofColumn() - Define relationships with
back_populatesfor bidirectional access - Use association tables for many-to-many relationships
- Set appropriate
nullable,unique, anddefaultconstraints - Use
db.session.get()for queries by primary key - Use
.where()instead of.filter()in modern SQLAlchemy - Always commit after modifications
- Use
datetime.now()for timestamp defaults - Define
__tablename__explicitly
9. Configuration Management
Overview
Environment-specific configuration classes for different deployment stages.
Configuration Pattern
File: config.py
class DevelopmentConfig:
SQLALCHEMY_DATABASE_URI = 'sqlite:///app.db'
DEBUG = True
CACHE_TYPE = "SimpleCache"
CACHE_DEFAULT_TIMEOUT = 300
class TestingConfig:
SQLALCHEMY_DATABASE_URI = 'sqlite:///test.db'
TESTING = True
CACHE_TYPE = "SimpleCache"
class ProductionConfig:
SQLALCHEMY_DATABASE_URI = 'postgresql://user:pass@localhost/dbname'
DEBUG = False
CACHE_TYPE = "RedisCache"
CACHE_REDIS_URL = "redis://localhost:6379/0"
Loading Configuration
def create_app(config_name):
app = Flask(__name__)
app.config.from_object(f'config.{config_name}')
# ...
Common Configuration Options
SQLALCHEMY_DATABASE_URI: Database connection stringDEBUG: Enable/disable debug modeTESTING: Enable testing modeSECRET_KEY: Secret key for sessions/JWTCACHE_TYPE: Cache backend typeCACHE_DEFAULT_TIMEOUT: Default cache timeout in secondsSQLALCHEMY_TRACK_MODIFICATIONS: Track model changes (usually False)
Best Practices
- Use environment variables for secrets
- Create separate configs for dev, test, prod
- Never commit sensitive data to version control
- Use SQLite for development, PostgreSQL for production
- Disable debug mode in production
- Use Redis cache in production
- Set proper cache timeouts per environment
10. Advanced Route Patterns
Overview
Common patterns for building robust REST API endpoints.
1. CRUD Operations
Create
@books_bp.route('', methods=['POST'])
def create_book():
try:
data = book_schema.load(request.json)
except ValidationError as e:
return jsonify(e.messages), 400
new_book = Books(**data)
db.session.add(new_book)
db.session.commit()
return book_schema.jsonify(new_book), 201
Read (List)
@books_bp.route('', methods=['GET'])
def get_books():
books = db.session.query(Books).all()
return books_schema.jsonify(books), 200
Read (Single)
@books_bp.route('/<int:book_id>', methods=['GET'])
def get_book(book_id):
book = db.session.get(Books, book_id)
if not book:
return jsonify({"error": "Book not found"}), 404
return book_schema.jsonify(book), 200
Update
@books_bp.route('/<int:book_id>', methods=['PUT'])
@limiter.limit("30 per hour")
def update_book(book_id):
book = db.session.get(Books, book_id)
if not book:
return jsonify("Invalid book_id"), 404
try:
data = book_schema.load(request.json)
except ValidationError as e:
return jsonify(e.messages), 400
for key, value in data.items():
setattr(book, key, value)
db.session.commit()
return book_schema.jsonify(book), 200
Delete
@books_bp.route('/<int:book_id>', methods=['DELETE'])
@limiter.limit("8 per day")
def delete_book(book_id):
book = db.session.get(Books, book_id)
db.session.delete(book)
db.session.commit()
return jsonify(f"Successfully deleted book {book_id}")
2. Search Pattern
@books_bp.route('/search', methods=['GET'])
def search_books():
title = request.args.get('title')
books = db.session.query(Books).where(Books.title.ilike(f"%{title}%")).all()
return books_schema.jsonify(books), 200
3. Aggregation Pattern (Popular Books)
@books_bp.route('/popularity', methods=['GET'])
def get_popular_books():
books = db.session.query(Books).all()
# Sort by relationship count
books.sort(key=lambda book: len(book.loans), reverse=True)
output = []
for book in books[:5]:
book_format = {
"book": book_schema.dump(book),
"readers": len(book.loans)
}
output.append(book_format)
return jsonify(output), 200
4. Nested Resource Pattern
@loans_bp.route('/<int:loan_id>/add-book/<int:book_id>', methods=['PUT'])
@limiter.limit("600 per day", override_defaults=True)
def add_book(loan_id, book_id):
loan = db.session.get(Loans, loan_id)
book = db.session.get(Books, book_id)
if book not in loan.books:
loan.books.append(book)
db.session.commit()
return jsonify({
'message': f'successfully add {book.title} to loan',
'loan': loan_schema.dump(loan),
'books': books_schema.dump(loan.books)
}), 200
return jsonify("This book is already on the loan"), 400
5. Dynamic Query with Fallback
@books_bp.route('', methods=['GET'])
def get_books():
try:
page = int(request.args.get('page'))
per_page = int(request.args.get('per_page'))
query = select(Books)
books = db.paginate(query, page=page, per_page=per_page)
return books_schema.jsonify(books), 200
except:
books = db.session.query(Books).all()
return books_schema.jsonify(books), 200
HTTP Status Code Guide
200 OK: Successful GET, PUT, DELETE201 Created: Successful POST400 Bad Request: Validation error401 Unauthorized: Missing/invalid authentication403 Forbidden: Expired token, insufficient permissions404 Not Found: Resource doesn’t exist500 Internal Server Error: Server error
Best Practices
- Use appropriate HTTP methods (GET, POST, PUT, DELETE)
- Return correct HTTP status codes
- Validate all input data with Marshmallow
- Handle errors gracefully
- Use dynamic URL parameters for resource IDs
- Implement proper error messages
- Use query parameters for filtering/pagination
- Combine decorators (limiter, auth) in correct order
- Use
ilike()for case-insensitive search - Implement relationship checks before modifications
Dependencies
File: requirements.txt
Flask==3.1.2
Flask-SQLAlchemy==3.1.1
Flask-Limiter==4.0.0
Flask-Caching==2.3.1
flask-marshmallow==1.3.0
marshmallow-sqlalchemy==1.4.2
python-jose==3.5.0
Werkzeug==3.1.3
SQLAlchemy==2.0.44
Project Structure Summary
library-api/
├── app/
│ ├── __init__.py # Application factory
│ ├── models.py # SQLAlchemy models
│ ├── extensions.py # Extension initialization
│ ├── blueprints/
│ │ ├── books/
│ │ │ ├── __init__.py
│ │ │ ├── routes.py
│ │ │ └── schemas.py
│ │ ├── loans/
│ │ │ ├── __init__.py
│ │ │ ├── routes.py
│ │ │ └── schemas.py
│ │ └── user/
│ │ ├── __init__.py
│ │ ├── routes.py
│ │ └── schemas.py
│ └── util/
│ └── auth.py # JWT utilities
├── app.py # Entry point
├── config.py # Configuration classes
└── requirements.txt # Dependencies
Quick Reference
Extension Initialization Pattern
# In extensions.py
extension = Extension()
# In create_app()
extension.init_app(app)
Blueprint Pattern
# In blueprint __init__.py
bp = Blueprint('name', __name__)
from . import routes
# In create_app()
app.register_blueprint(bp, url_prefix='/prefix')
Protected Route Pattern
@bp.route('/endpoint', methods=['POST'])
@limiter.limit("10 per hour")
@token_required
def protected_endpoint():
user_id = request.logged_in_user_id
# Logic here
Validation Pattern
try:
data = schema.load(request.json)
except ValidationError as e:
return jsonify(e.messages), 400
See Also
Foundation Concepts
- Flask REST API Development Guide - Basic Flask API patterns and fundamentals
- SQL & SQLAlchemy - Database fundamentals and basic ORM operations
Advanced Patterns
- Flask Advanced Features Guide - Detailed coverage of rate limiting, caching, pagination, and production patterns
- SQLAlchemy Relationships Guide - Understanding relationship patterns and configurations
- SQLAlchemy Advanced Patterns Guide - Session management, query optimization, and production best practices
Authentication & Security
- API Authentication Guide - Authentication strategies and security patterns
- OAuth2 and Token Management Guide - OAuth2 flows and token lifecycle management
- Error Handling Cheat Sheet - Exception handling and error management
Related Topics
- Library-Api Patterns Summary - Quick reference summary of patterns in this guide
- Python CLI Applications Guide - Building CLI applications with similar patterns
- Testing and Debugging Cheat Sheet - Testing Flask applications